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1 Introduction

By now there is mounting evidence in favor of both the usefulness as well as the validity

of the gauge/gravity duality between N = 4 SYM in four dimensions and string theory

on AdS5 × S5. It is thus natural to ask if this duality can be tested and utilized in the

cases of gauge theories in dimensions other than four. Such investigations are naturally

motivated by the need to understand how the gauge/gravity duality may be realized in non-

conformal supersymmetric Yang-Mills theories. For the special cases of sixteen supercharge

SYM theories in diverse dimensions, the gravity duals were proposed some time ago in [1].

While the feasibility of generic tests of gauge/gravity duality is not very clear for sixteen

supercharge SYM theories in dimensions greater than four: the SYM theories are not

renormalizable and the dual Dp-brane geometries suffer from the non-decoupling of the

alpha-prime corrections, it is worthwhile to exploit the duality between SYM theories in

p+1 dimensions and Dp-branes and test it in the case of protected operators whose vacuum

expectation values are independent of the coupling g2. A special class of Wilson loops, first

proposed by Zarembo in the case of N = 4 SYM [2] are particularly well suited to this

purpose. In this paper we generalize Zarembo’s construction to perform a non-trivial test

of the duality between Dp-brane theories and SYM in p+ 1 dimensions.

The Maldacena-Wilson loop [3, 4] has proven to be a very powerful probe of the

AdS/CFT correspondence. In four dimensional N = 4 supersymmetric Yang-Mills theory

it is given by

W =
1

N
TrP exp

∮
dτ
(
iẋµ(τ)Aµ + |ẋ(τ)|ΘI(τ)ΦI

)
, (1.1)
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where N is the rank of the gauge group SU(N), ΦI are the six scalar fields of the theory,

and ΘIΘI = 1. The path of the Wilson loop is defined by xµ(τ), but there is also the

freedom to define a path on S5 parametrized by ΘI(τ). The specific coupling to the scalar

fields in (1.1) is chosen to ensure local supersymmetry; the amount of global supersymme-

try respected by W is intimately connected with the correlation of the paths xµ(τ) and

ΘI(τ). There is a “perfectly” correlated choice, found by Zarembo [2]1

ΘI(τ) =
ẋµ

|ẋ|M
I
µ, M I

µM
I
ν = δµν , (1.2)

where M I
µ is a constant matrix, which assures that the vacuum expectation value of the

Wilson loop is trivial

〈W 〉Zarembo = 1. (1.3)

The amount of supersymmetry respected by the loop is found by requiring

δǫW ∼ ẋµ
(
iγµ +M I

µΓI

)
ǫ = 0. (1.4)

This gives one halving of the supersymmetry2 for each non-zero component of ẋµ, so that,

for example, a planar loop is 1/4 BPS. One can appreciate the result (1.3) from a few

different perspectives. The first is that (1.2) ensures that the combined gauge and scalar

field Feynman gauge propagator joining two points on the loop is zero
〈(
iẋµ(τ)Aµ + |ẋ(τ)|ΘI

x(τ)Φ
I
)(
iẏν(σ)Aν + |ẏ(σ)|ΘJ

y (σ)ΦJ
)〉

=
g2

4π2

−ẋ · ẏ + Θx · Θy|ẋ||ẏ|
(x− y)2

= 0,
(1.5)

which immediately precludes the contribution of ladder/rainbow diagrams. As shown by

Zarembo [2], all interacting diagrams up to two loops can also, without an inordinate effort,

be shown to vanish. A much stronger statement was made in [8], where superspace tech-

niques were exploited to prove (1.3) for Wilson loops whose contours are contained in R
3.

The loops of Zarembo are also naturally described in terms of the twisting of N = 4 SYM

to produce a topological theory; in this context the triviality of the vacuum expectation

value for loops in the full R
4 was proven in [9].

At strong coupling the vacuum expectation value of (1.1) is accessible via the dual

string theory. It is given by the partition function of a fundamental string, the saddle

points of which are minimal area embeddings in AdS5 × S5 [3, 10]. In the following

coordinates for AdS5 × S5

ds2 = U2dXµdXµ +
1

U2
dU IdU I , (1.6)

one requires the following boundary conditions for the string embedding Σ at the boundary

U = ∞
Xµ|∂Σ = xµ,

U I

|U |

∣∣∣∣
∂Σ

= ΘI . (1.7)

1These Wilson loops are closely related to a class constructed later in [5–7] whose contours lie on a

three-sphere.
2The Poincaré and superconformal supersymmetries are halved independently of one another.
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The action of the string is then found to contain a generic divergence owing to the diverging

area element of Anti-de Sitter space as the boundary is approached. This divergence is

proportional to the circumference of the loop

S =

√
λ

2π

∫
d2σ
√

det ∂aXM∂bXNGMN =

√
λ

2π

(
Umax.

∮
dτ |ẋ(τ)| +Areg.

)
, (1.8)

where X
M = (Xµ, U I), and may be removed via a Legendre transformation [10], leaving

the regularized action Sreg. =
√
λAreg./(2π). The result for the vacuum expectation value

of (1.1) is then

〈W 〉λ→∞ = V exp (−Sreg.) , (1.9)

where V is a prefactor stemming from integration over zero modes in the partition func-

tion. The disc partition function naturally involves three zero modes. If there is no extra

parametric freedom in embedding the string, then V ∼ λ−3/4, i.e. one factor of λ−1/4 for

each zero mode. This is the case for the standard 1/2 BPS circle which sits at a point on

S5 [11]. The expectation therefore, for the string dual of the Zarembo loops, is that V = 1,

and Sreg. = 0. The first of these conditions has not been shown explicitly, and for other

than planar loops remains a mystery. For the case of planar loops, it was argued in [2] that

there are 3 compensating zero modes stemming from parametric freedom in embedding the

string in an S2 ⊂ S5. For loops other than planar, it remains unclear how the contribution

of the three basic zero modes is cancelled [12]. We discuss this issue further in section 3.3.

The second condition, Sreg. = 0, was shown explicitly by Zarembo in [2] for the circular

supersymmetric Wilson loop in AdS5 × S5. There the string solution was found and the

regularized action calculated. The analogous string-side embodiment of the results of [8]

were realized3 in [12], where it was proven that Sreg. = 0 for the string dual of a generic

N = 4 SYM Zarembo Wilson loop. This used the method of calibrated surfaces which we

will review in section 3.2.

In the present work we will extend these results, to the degree it is possible, to max-

imally supersymmetric Yang-Mills theories in general spacetime dimensions. Indeed we

may view (1.1) as arising from a toroidal compactification of the standard Wilson loop in

N = 1, d = 10 SYM, and in this sense we are free to compactify more or less directions

than 6, namely 9 − p where p ranges from 0 to 9,

1

N
TrP exp

∮
dτ iẋM (τ)AM

→ 1

N
TrP exp

∮
dτ
(
iẋµ(τ)Aµ + |ẋ(τ)|ΘI(τ)ΦI

)
,

(1.10)

where M = 1, . . . , 10, µ = 1, . . . , p+1, I = 1, . . . , 9−p. We then require the same relations

to hold relating the paths xµ and ΘI , i.e. (1.2). The supersymmetry relation (1.4) also

continues to hold after this dimensional reduction. For the various spacetime dimensions d,

we are restricted by (1.2) to curves xµ(τ) in various subspaces of R
d, these are summarized

in the table 1. We will concentrate on the dimensions 2 ≤ d ≤ 7, since the curves in R
1

are the trivial 1/2 BPS straight lines.

3The issue of the zero mode prefactor V is still outstanding.
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d 1 2 3 4 5 6 7 8

Curves in R
1

R
2

R
3

R
4

R
4

R
3

R
2

R
1

Table 1. Restrictions on the dimensionality of supersymmetric Wilson loops.

On the gauge theory side, we perform our analyses using both perturbative and (non-

perturbative) superspace techniques. From the perturbative point of view, we study the

relevant gauge theories in a unified way, up to the next to leading order (NLO), or two

loop approximation. This analysis allows us to perform a straightforward extension of

the results presented in [2]. At this order in perturbation theory we find that the vacuum

expectation value for the Zarembo loops in all dimensional reductions of the d = 10, N = 1

SYM theories, down to d = 1, is identically ‘1’. Clearly, the NLO results beg the question

if some or all of the gauge theories preserve the triviality of the Zarembo loops to higher

or even all orders in perturbation theory.

On a related note, one may also worry about the reasonability of perturbative methods

in non-renormalizable gauge theories, which SYM in d ≥ 5 are expected to be. Though

we do not expect the perturbative results for generic gauge theory observables in these

theories to be meaningful, we can use perturbation theory to gauge the validity of results

believed to be protected by non-renormalization theorems. The non-renormalization the-

orems for the sixteen supercharge theories in question were derived in [8]. In that paper,

the d dimensional SYM theories were reformulated in a d − 3 superspace language. This

reformulation, which is briefly reviewed in the next section, allows one to view the Wilson

loops in question as elements of a chiral ring. Furthermore, the (superspace) equations of

motion were shown to imply shape invariance of the loops embeddable in R
3. These two

results were used to formally establish the triviality of these Zarembo loops for all sixteen

supercharge gauge theories in 7 > d ≥ 3. The appearance of a generalized Konishi anomaly

in d = 7 [8] puts an upper bound (in terms of dimensions) on the gauge theories for which

the perturbative results may be expected to hold to all loop orders. However, for gauge the-

ories in d < 3, the superspace methods are simply limited by the construction/requirement

of a d − 3 dimensional superspace, with at least one dynamical supercoordinate. We can

thus regard the perturbative results as a non-trivial verification of the predictions of [8] at

the NLO, and a hint toward the potential for generalization of the triviality of the Zarembo

loops to all loop orders for gauge theories in dimensions 3 > d ≥ 1.

On the gravity side, we use the string duals for the sixteen supercharge Yang-Mills

theories proposed in [1]. These Dp-brane geometries (where d = p + 1) contain an S8−p,

the d boundary theory coordinates, and a U direction, so that the boundary is at U = ∞.

We find the explicit fundamental string solutions corresponding to circular Zarembo-type

Wilson loops in these backgrounds.4 They wrap part of an S2 ⊂ S8−p and extend in the

U -direction from the boundary circle. We find that these solutions have the expected zero

regularized area. This result is independent of the cut-off Umax. where the boundary theory

is defined; this is the string-side manifestation of the protection of these operators in the

4String duals of generic Wilson loops have also been considered in the Dp-brane geometries, see [13].
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gauge theories, despite the issues of running couplings and non-renormalizability. In ap-

pendix A we analyze the supersymmetry respected by the solutions and find that they are

indeed 1/4 BPS, as required. We also generalize the framework of calibrated surfaces given

in [12] to the Dp-brane geometries, thereby proving that the regularized action vanishes

for any Zarembo-type Wilson loop constructed in these theories, and as a check show that

our circular string solutions also satisfy the appropriate equations. Finally, in section 3.3

we discuss the potential string-side manifestation of the gauge theory generalized Konishi

anomaly for d = 7.

2 Gauge theory results

In this section we present the arguments in favor of the triviality of the vacuum expectation

values of supersymmetric Wilson loops in 16 supercharge super Yang-Mills theories, from

the perspective of the relevant gauge theories. To this end, we shall start with a pertur-

bative point of view, and subsequently correlate the weak-coupling results with all-loop

predictions based on superspace techniques obtained in [8].

We start with a sixteen supercharge SYM action in 10 > 2ω ≥ 1 dimensions given by

S =
1

g2

∫
d2ωx Tr

(
1

2
F 2
µν + (DµΦ

i)2 − 1

2
[Φi,Φj ]2 + Ψ̄ΓµDµΨ + iΨ̄Γi[Φi,Ψ]

)
. (2.1)

It is understood that the Lorentz indices µ, ν = 1, . . . , 2ω while the number of scalars

i, j = 1, . . . , (10 − 2ω).

As was shown by Zarembo in [2], the triviality of the Wilson loop expectation value

at the leading order in perturbation theory is simply a consequence of the equality of the

gluon and scalar propagators in the Feynman gauge. Although the focus in [2] was on four

dimensional gauge theory, this leading order result readily generalizes to all the dimensional

reductions of the ten dimensional N = 1 gauge theory.

At the next-to-leading order, the diagrams that do not involve loop corrections to

propagators cancel due to the same reason as above. In other words, the following cance-

lations between Feynman diagrams occur for all dimensional reductions of N = 1, d = 10

SYM theories, due to the same arguments put forward in the Feynman gauge for the four

dimensional theory in [2]:

+ = 0,

– 5 –
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+ + = 0,

+ = 0.

For the triviality of the Wilson loop expectation value to hold at the next-to-leading order,

all that one needs to show is the equality between the one loop corrected gluon and scalar

propagators in the Feynman gauge, such that the following cancelation takes place:

+ = 0.

The one-loop gluon propagator in this gauge is given by

∆ab
µν = g2δab

1

p2

(
δµν − g2N

Γ(2 − ω)Γ(ω)Γ(ω − 1)

(4π)ωΓ(2ω)
fg(ω)

δµν − pµpν/p
2

p4−2ω

)
, (2.2)

where the function fg encodes the contributions to the propagator from the various inter-

action vertices

fg = 2(3ω − 1) −Ns −Nf (ω − 1). (2.3)

The contribution of 2(3ω−1) in fg is due to the combination of the gluon-gluon and ghost-

gluon scattering in 2ω dimensions. The factor of Ns arises from the Ns real adjoint scalars

running in loops, while the factor of Nf ; the number of real fermionic degrees of freedom

in the theory, is due to gluon-fermion scattering.

Using the same notation, we may write the one loop corrected scalar propagator as

∆ab
mn = g2δab

1

p2

(
δmn − g2N

Γ(2 − ω)Γ(ω)Γ(ω − 1)

(4π)ωΓ(2ω)
fs(ω)

δmn
p4−2ω

)
, (2.4)

where

fs(ω) = 4(2ω − 1) − Nf

2
(2ω − 1). (2.5)

The contribution of 4(2ω−1) comes about due to the scalar-vector intermediate state, while

the fermion loop contribution to the scalar propagator generates a factor of
Nf
2 (2ω − 1)

with the opposite sign.

A necessary and sufficient condition for the supersymmetric Wilson loops to have unit

vacuum expectation value at the one and two loop level is

fg = fs. (2.6)

– 6 –
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Number of Supercharges Dimensions ≤
16 9

8 5

4 3

Table 2. SYM theory dimensions and number of supercharges for which NLO calculations support

a trivial Wilson loop VEV.

It is easy to check that this is indeed satisfied when the number of real scalars Ns = 10−2ω

and Nf = 16.

We have thus established the triviality of the Wilson loop expectation value at the

next to leading order for all dimensional reductions of the N = 1 ten dimensional SYM.

The one loop corrected gluon and scalar propagators, as they have been expressed

above, are also valid for the dimensional reduction of the six and four dimensional N = 1

SYM theories as well. The equality of the loop corrected propagators continues to hold if

we use either

Nf = 8, Ns = 6 − 2ω or (2.7)

Nf = 4, Ns = 4 − 2ω. (2.8)

This fact proves the triviality of Wilson loop expectation value for eight (four) supercharge

theories in dimensions less than or equal to five (three).

Thus, table 2 summarizes the balance between the number of dimensions and the

number of supersymmetries necessary for Wilson loops to have trivial expectation values at

the next-to-leading order: It is probably too optimistic to expect that all the gauge theories

listed above retain the triviality of the Zarembo loops to all orders in perturbation theory.

However, for the case of the sixteen supercharge theories, lower dimensional superspace

techniques were successfully employed in [8] to probe the all-loop behavior of many of the

gauge theories considered above. We shall briefly review these techniques and compare the

superspace results with the perturbative computations reported above.

For the four dimensional theory, the starting point was a rewriting of the action in a

N = 2, d = 1 superspace, coordinatized by t, θα, θ̄α, where α = 1, 2 is an SU(2) index. The

action for the four dimensional gauge theory was shown to be [8]5

S =
1

g2

∫
d3x dt

[
Tr

(
WαWαǫijk

(
Φi∂jΦk +

2i

3
ΦiΦjΦk

)
+ cc

)

θθ

+ Tr
(
Ω̄ie

V Ωie
−V
)
θθθ̄θ̄

]
.

(2.9)

In the quantum mechanical superspace, the three chiral superfields Φi contain the spatial

components of the gauge potential Ai and three of the six real scalars6 Φi+3. The bottom

5
Wα = D̄D̄eV Dαe−V , see [8] for further details.

6At the risk of abuse of notation, we denote both the chiral superspace fields as well as the real scalars

by Φ. We hope that the difference will be clear from the context.
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component of the chiral fields being given byAi+iΦ
i+3. The temporal component A0 as well

as Φ7,8,9 are contained in the vector superfield V . The superfields are also implicitly labeled

by the coordinates xi, which are treated simply as auxiliary indices from the quantum

mechanical point of view. Ω is given by

Ωi = Φi + e−V (i∂i − Φ̄i)e
V . (2.10)

One of the main observations in the paper was that the Wilson loops of the type considered

in this paper could be thought of as elements of a chiral ring from the lower dimensional su-

perspace point of view. In particular the equation of motion for these loops took on the form
〈
Tr
(
W (C, x) ǫijkFjk(x)

)〉
θ=θ̄=0

= Ai, (2.11)

where,

Fjk = ∂jΦk − ∂kΦj + i[Φj ,Φk], (2.12)

and where W (C, x) is the untraced Wilson loop operator with a marked point x on the

loop, and Ai is a possible anomaly term. In the absence of the anomaly term, the loop

equation implied shape independence. In conjunction with the fact that the loop is an

element of the chiral ring, the shape independence yielded a trivial expectation value of

the loop. Note that this hinges upon the three-dimensional epsilon symbol and for this

reason is limited to curves in R
3.

Similar arguments were also applied to sixteen supercharge Yang-Mills theories in

dimensions 3 ≤ d ≤ 7. The key to the generalization was being able to write the action

for the relevant gauge theories in a four supercharge d − 3 dimensional superspace. It

was further shown that only in the case of the seven dimensional gauge theory does one

encounter a non-zero anomaly; this is the generalized Konishi anomaly.

Conjoining these superspace arguments with the evidence presented from the weak

coupling perturbation theory, we conclude that sixteen supercharge SYM theories in di-

mensions 6 ≥ d ≥ 3 possess supersymmetric Wilson loops with trivial vacuum expecta-

tion values.

It is also worth noting that lower dimensional superspace methods were also employed

to analyze Wilson loops in SYM theories with 8 supercharges, and Wilson loops with

trivial expectation values were found in 4 ≥ d ≥ 1 dimensions in [14]. These results are

consistent with the perturbative results reported earlier for the dimensional reductions of

N = 1, d = 6 SYM. The case of the five dimensional Yang-Mills theory, suffers from a non-

vanishing anomaly, which was not seen in the perturbative calculations we presented above.

In summary, the next to leading order perturbation theory and the superspace argu-

ments match up in the cases given in table 3. In the case of sixteen supercharge theories,

we also have a dual gravity description available to us. In what follows, we reproduce and

generalize the results for this case using the dual gravity picture. As table 3 indicates,

apart from the usefulness of the gravity computation as non-trivial test of the gauge grav-

ity duality, can hope to shed some light on the non-perturbative behavior of the Zarembo

loops for the gauge theories for which the lower dimensional superspace arguments do not

exist, e.g. the case of d = 2 SYM with sixteen supercharges.

– 8 –
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Number of Supersymmetries Dimensions

16 3 ≤ d ≤ 6

8 1 ≤ d ≤ 4

Table 3. SYM theory dimensions and number of supercharges for which both NLO and all-loop

superspace calculations support a trivial Wilson loop VEV.

3 String duals and strong coupling results

The string duals of the class of maximally supersymmetric Yang-Mills theories were pre-

sented in [1]. The holographic dual of the d = p+ 1 dimensional gauge theory is given by

the string frame metric

ds2 = α′

(
U (7−p)/2

Cp
dx2

q
+

Cp

U (7−p)/2
dU2 + Cp U

(p−3)/2 dΩ2
8−p

)
,

eφ = (2π)2−pg2

(
C2
p

U7−p

)(3−p)/4

, C2
p = g2N 27−2pπ(9−3p)/2 Γ

(
7 − p

2

)
,

(3.1)

where g and N are the bare coupling and the number of colours of the dual Yang-Mills

theory. There is also a p-form gauge potential which depends only on the U coordinate.

These solutions are obtained from the field theory limit of Dp-brane solutions

g2 = (2π)p−2 gs α
′(p−3)/2

= fixed, α′ → 0, (3.2)

where one can see that for p > 3, the string coupling gs → ∞ which indicates a breakdown

of the limit, in the sense that α′ corrections are not suppressed and the decoupling of

bulk modes is not guaranteed. This is a reflection of the fact that the Yang-Mills theories

with d = p + 1 > 4 are nonrenormalizable. As discussed in the introduction, we are

describing objects which are protected and therefore we can trust our solutions in spite

of this breakdown. Indeed we will find that the regularized action of our string solutions

vanishes independently of the choice of cut-off Umax. - the coordinate dual to the boundary

gauge theory energy scale.

3.1 Supersymmetric circular loops

We present here string solutions corresponding to circular supersymmetric Wilson loops

in the background (3.1). We have a natural lower bound of p = 1, in order that the

boundary has enough dimensions to accommodate the circle, namely two, and a natural

upper bound of p = 6, since, as we will see below, we will require an S2 to accommodate the

coupling of the Wilson loop to the scalars of the dual gauge theory. We have analyzed the

supersymmetry of these solutions in appendix A, where we show that they are 1/4 BPS.

We begin with the action of the fundamental string in Euclidean conformal gauge, in

the background (3.1). We write

dx2
q

= dr2 + r2dψ2 + dx2
p−1,

dΩ8−p = dθ2 + cos2 θ dφ2 + sin2 θ dΩ2
6−p,

(3.3)

– 9 –
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where dx2
p−1 is a p − 1 dimensional metric on R

1,p−2 or R
p−1 (in the case p = 1 we are

forced to take the Euclidean metric). Our solution ansatz is then

ψ = φ = τ, τ ∈ [0, 2π], r = r(U), θ = θ(U), dx2
p−1 = dΩ2

6−p = 0, (3.4)

with which we can write the string action as

S =
Cp
4π

∫ 2π

0
dτ

∫
dσ

[
U (7−p)/2

C2
p

(
r2 + r′

2
)

+
U ′2

U (7−p)/2
+ U (p−3)/2

(
θ′

2
+ cos2 θ

)]
, (3.5)

where prime denotes differentiation w.r.t. σ. We must also satisfy the Virasoro constraint

U (7−p)/2

C2
p

r′
2
+

U ′2

U (7−p)/2
+ U (p−3)/2θ′

2
= U (p−3)/2 cos2 θ +

U (7−p)/2

C2
p

r2. (3.6)

The solution we find is

R2 − r(U)2 =





2C2
p

5−p U
p−5, p 6= 5

−2C2
5 logU, p = 5

,

sin θ =
Umin.

U
, r(Umin.) = 0,

(3.7)

where R is the asymptotic radius of the circle at U = ∞. Note that for p > 4, r(∞) = ∞,

R becomes imaginary, and so the solution doesn’t satisfy the usual boundary condition.

We will cut the geometry off at Umax. however, and so define the radius of the circle in

the boundary theory as r(Umax.). The solution wraps one half of an S2 ⊂ S8−p; the string

worldsheet’s boundary lies along the equator.7 In order to check that (3.7) is in fact a

solution to the equations of motion we express r′ and θ′ in terms of U ′ and plug them into

the Virasoro constraint (3.6) and solve for U ′ in terms of U . The result of this operation is

U ′ =





√
2

5−p

(
U5−p/U5−p

min. − 1
) (
U2 − U2

min.

)
, p 6= 5

√
2 log(U/Umin.)

(
U2 − U2

min.

)
, p = 5.

(3.8)

With this expression we can also express U ′′ in terms of U , and through (3.7), we can

therefore also express r′′ and θ′′ in terms of U . The expression for U ′′ is

U ′′ =
Up−5

min.

5 − p

(
(5 − p)U4−p (U2 − U2

min.) + 2U(U5−p − U5−p
min.)

)
, p 6= 5,

U ′′ = U−1 (U2 − U2
min.) + 2U log(U/Umin.), p = 5.

(3.9)

It is then a straightforward, if somewhat tedious exercise to verify that the equations of

motion for U , r, and θ are satisfied through the chain of substitutions.

We have plotted U(r) in figure 1.

It remains to compute the action of the solutions. Using (3.6) we can express the action

as twice the “prime” terms, i.e. those involving derivatives by σ. We express everything

7More precisely, when Umax. is not strictly ∞, the boundary is shifted down towards the pole.
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Figure 1. A plot of U vs. r for the solutions (3.7). We have set R = Cp = 1 (R = i for p > 4).

Note that for p > 4, r diverges toward U = ∞.

in terms of U and U ′, the latter we use to reexpress the integration over σ by integration

over U .

S = Cp

∫ Umax.

Umin.

dU

U (7−p)/2

2
5−p U

2
(
U5−p/U5−p

min. − 1
)

+ U2 − U2
min.√

2
5−p

(
U5−p/U5−p

min. − 1
) (
U2 − U2

min.

) , p 6= 5,

S = C5

∫ Umax.

Umin.

dU

U

2U2 log(U/Umin.) + U2 − U2
min.√

2 log(U/Umin.)
(
U2 − U2

min.

) , p = 5.

(3.10)

The integral is simple to evaluate. The result is

S = Umax.

√
1 − U2

min./U
2
max. r(Umax.). (3.11)

The prescription for removing the divergence from the action is to perform a Legendre

transformation [10], as follows

Sreg. = S −
∫
dτ dσ ∂σ

(
YI δS

δ∂σYI
)

= S −
∫
dτ YI δS

δ∂σYI

∣∣∣∣∣
∂Σ

,

(3.12)

where we are using the coordinates defined in (3.16). We then find, using (3.30) and (3.8),

δS

δ∂σYI
=
Cp
2π

U (p−7)/2
(
Uθ̂I

)′
=

1

2π
r(U)

(
− sin τ, cos τ, 0, . . . , 0

)
, (3.13)
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and so ∫
dτ YI δS

δ∂σYI

∣∣∣∣∣
∂Σ

= Umax.

√
1 − U2

min./U
2
max. r(Umax.). (3.14)

We therefore have that

Sreg. = 0, (3.15)

independent of Umax. and consistent with our expectations.

3.2 Calibrated surfaces

In the paper [12] a method of calibrated surfaces was employed to prove that the string duals

of the supersymmetric Wilson loops of general shape in the p = 3 case had the expected reg-

ularized action, namely zero. We now show that this machinery applies equally well to the

case of general p. As a check on our work, we also show that it applies to the solutions (3.7).

In order to apply the technique we express the metric of S8−p together with the dU2

term from (3.1) as follows

dU2

U2
+ dΩ2

8−p =
dYIdYI

Y2
, YI = Uθ̂I , θ̂I θ̂I = 1, I = 1, . . . , 9 − p. (3.16)

For convenience we will rescale the xµ
q

= CpX
µ. We then have

ds2 = α′ Cp

(
Y(7−p)/2dXµdXµ + Y(p−7)/2dYIdYI

)
. (3.17)

Now we make a split in the YI coordinates

YI = (Y m, V i), m = 1, . . . , p+ 1, i = 1, . . . , 8 − 2p, (3.18)

so that Y m and Xµ have the same number of components. It is clear that this can only

be done for p ≤ 4. For p > 4 we can choose instead to split the Xµ = (X Ī , V i), so that

X Ī has the same number of components as YI , and what follows is equally true (with

the appropriate relabelling of indices). We use precisely the same definition for an almost

complex structure proposed in [12]

J = JAB dX
A ∧ dXB = δµm dX

µ ∧ dY m, (3.19)

where X
A = (Xµ, Y m, V i). We find that the following key relations used in [12] are equally

true for the metric (3.17), namely

JBA J
C
B = −δµA δCµ − δmA δ

C
m,

GMNJ
M
µ JNν = Gµν , GMNJ

M
m JNn = Gmn, GMNJ

M
i JNj = 0.

(3.20)

That being the case everything follows as in [12]. We continue by reiterating the results

of [12] in the interest of readability. One defines

P ≡ 1

4

∫
d2σ

√
hhabGMN v

M
a v

N
b ,

vMa ≡ ∂aX
M − JMN

hacǫ
cb

√
h

∂bX
N ,

(3.21)
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where hab is a positive definite metric on the worldsheet. Using (3.20) one can then

show that

P =
1

2

∫
d2σ

√
hhabGMN ∂aX

M∂bX
N −

∫

Σ
J − 1

4

∫
d2σ

√
hhabGij ∂aV

i∂bV
j , (3.22)

where Σ is the string worldsheet. Now suppose that vMa = 0. As can be easily checked in

conformal gauge, this condition automatically implies that the string equations of motion

and Virasoro constraints are satisfied. Further, this implies that P = 0 and that ∂aV
i = 0.

We then have that

S =
Cp
2π

∫

Σ
J, (3.23)

that is, we have that the action of the string worldsheet is expressible as an integral of the

closed 2-form J over the string worldsheet. This will integrate to a surface term

∫

Σ
J =

∫

Σ
δµm d(Y

mdXµ) = Umax.

∫

∂Σ
δµm θ̂

m dXµ. (3.24)

Now examining the equation vMa = 0 in conformal gauge one finds

Ẋµ = U (p−7)/2 Y ′m = U (p−7)/2
(
U (θ̂m)′ + θ̂mU ′

)
. (3.25)

If it is true that U (p−5)/2 (θ̂m)′ → 0 as the boundary is approached, one then has that

Ẋµ(Umax.) ≃ U (p−7)/2
max. (θ̂m U ′)|Umax. , (3.26)

and so

θ̂m|∂Σ =
ẋµ

|ẋ| , (3.27)

where xµ = Xµ(Umax.) is the Wilson loop contour. This is precisely the contour of the su-

persymmetric Wilson loop in the gauge theory (1.2), (1.7). Thus we have found a solution

to the string equations of motion which also satisfies the necessary boundary conditions.

Furthermore, in conformal gauge we have that

U (p−7)/2 Y ′m =
2π

Cp

δS

δ∂σY m
, (3.28)

and therefore (3.24) also gives

S =

∮
dτ Y m δS

δ∂σY m

∣∣∣∣∣
∂Σ

, (3.29)

which is nothing but the divergence removed from the action by the Legendre transforma-

tion [10] to give Sreg.; thus we see that the regularized action vanishes for these solutions.

Again this result is independent of the choice of cut-off in the coordinate U .
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3.2.1 Checking the circular supersymmetric solutions

We can now verify that our solution (3.7) obeys the equations vMa = 0 and (3.26),

thereby confirming our result (3.11). We begin by writing our solution (3.7) in the co-

ordinates (3.17). We find (for example, for p 6= 5)8

X1 = r cosψ =

√
2

5 − p

(
Up−5

min. − Up−5
)

cos τ,

X2 = r sinψ =

√
2

5 − p

(
Up−5

min. − Up−5
)

sin τ,

Y 1 = −U cos θ sinφ = −
√
U2 − U2

min. sin τ,

Y 2 = U cos θ cosφ =
√
U2 − U2

min. cos τ,

Y 3 = U sin θ = Umin..

(3.30)

The equations vMa = 0 in conformal gauge then reduce to

X ′µ +
(
Y 2 + V 2

)(p−7)/4
Ẏ m=µ = 0,

Y ′m −
(
Y 2 + V 2

)(7−p)/4
Ẋµ=m = 0,

Ẋµ −
(
Y 2 + V 2

)(p−7)/4
Y ′m=µ

= 0,

Ẏ m +
(
Y 2 + V 2

)(7−p)/4
X ′µ=m

= 0,

(3.31)

which, through use of (3.8) may be shown to be satisfied. Finally we note that

U (p−5)/2 (θ̂m)′ =
U2

min.

U2
r(U)

(
− sin τ, cos τ, 0, . . . , 0

)
,

U (p−7)/2θ̂mU ′ =

(
1 − U2

min.

U2

)
r(U)

(
− sin τ, cos τ, 0, . . . , 0

)
,

(3.32)

and so (3.26) is also satisfied.

3.3 Zero modes and the generalized Konishi anomaly in d = 7

It seems a contradiction that in the gauge theory analysis discussed in section 2 there is

an anomaly in the case d = 7 precluding 〈W 〉 = 1 for this theory, whereas the string

solution seems to suffer no such issue. In fact, as discussed in the introduction, there is

more to the vacuum expectation value of the Wilson loop than the regularized action; the

prefactor V stemming from integration over zero modes in the partition function also plays

a role. The issue, as regards supersymmetric Wilson loops, was first discussed in [2], for

the case p = 3. Although there appears to be no parametric freedom for the minimal area

embedding of a string in an AdS space with given boundary conditions, Zarembo argued

that the supersymmetric circle may be embedded into the S5 with a freedom given by a

vector n ∈ S3 which chooses which S2 the worldsheet occupies. This gives a natural reason

for the cancellation of the prefactor in 〈W 〉, as these three zero modes could cancel the

8The p = 5 case follows similarly.
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effect of the basic three coming from the AdS embedding. This reasoning is limited to

the case of planar curves, and [12] noted the lack of resolution of this problem for general

curves. Specifically, in order for the R-symmetry of the Wilson loop defined in the gauge

theory to match the string solution, these zero modes must be integrated over.

In our case we note the fact that uniquely in the case of d = 7 (i.e. p = 6) do we have

that the spherical product space S8−p is an S2. In this case we are restricted to curves in

R
2, and we will concentrate on our explicit solution for the supersymmetric circle, although

we expect the following comments to be true for general closed, planar curves. The fact

that the spherical product space is an S2 precludes the existence of zero modes on the

spherical side of the geometry, and thus, assuming the absence of any parametric freedom

in the embedding on the analogue of the AdS side of the geometry, precludes the possible

cancellation of the three basic zero modes of the string worldsheet. We would thus expect

a non-zero prefactor V ∼ λ−3/4 and therefore our prediction for the vacuum expectation

value of the Wilson loop at strong coupling is

〈W 〉d=7 ∼
(
λ

R3

)−3/4

, (3.33)

where R is a scale setting the size of the Wilson loop. This seems to be the string-side

manifestation of the generalized Konishi anomaly in d = 7 discussed in section 2. It would

be very interesting to try to recover this result from gauge theory.

The situation is extremely reminiscent of the circular Wilson loop for N = d = 4

SYM obtained by a “large” conformal transformation of the straight line. In that case, the

Wilson loop expectation value is a non-trivial function of the ’t Hooft coupling. However,

the vacuum expectation value for the loop is entirely determined by an anomaly; namely,

the conformal anomaly [11]. For the seven dimensional gauge theory, the generalized

Konishi anomaly seems to play a similar role. It is tempting to speculate that it might

similarly be possible to recover the strong coupling result mentioned above from the gauge

theory end, by reducing the problem to a matrix model computation.9

4 Summary and outlook

In this paper we have generalized the construction of supersymmetric Wilson loops in

N = 4, d = 4 SYM at weak and strong coupling to the general case of SYM theories with

16 supercharges in d dimensions (and in the case of d ≤ 4 (d ≤ 3) at weak coupling, with 8

(4) supercharges). We have given two-loop perturbative evidence and reviewed the applica-

bility of evidence from superspace techniques, that these loops have trivial vacuum expec-

tation values. Using the gauge/strings duality we have also described the 16 supercharge

theory supersymmetric Wilson loops at strong coupling and also found strong evidence of

trivial expectation values; the dual string solutions have zero regularized action. We have

found the explicit fundamental string solutions for the case of circular supersymmetric

loops in general d. In the case of d = 7 where superspace techniques indicate a non-zero

9To this end, it might be interesting to investigate if the methods of [15] can be adapted to the analysis

of the gauge theory in d = 7.
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expectation value on the gauge theory side, we have found a strong candidate dual manifes-

tation of this phenomena at strong coupling, namely the disappearance of string worldsheet

zero modes. Based on this we have given a prediction for the strong coupling behavior of

the vacuum expectation value of supersymmetric Wilson loops in the d = 7 theory.

Looking beyond the issues addressed in this paper, it would doubtless be interesting

to try and extend the present results to more general Wilson loops and to other instances

of gauge/gravity dualities. For example, for the theories we considered with d > 4, the

various UV completions were discussed in [1] (see also [13]) and involve lifting to M-theory

(in the case of odd d), or the application of S-duality in the IIB case. We expect these

theories to retain the trivial Wilson loop operators we have constructed here as a natural

consequence of coupling independence. On a different note, it was pointed out earlier in

the paper, using both perturbative as well as superspace methods, that eight supercharge

SYM theories in 1 ≤ d ≤ 4 admit Zarembo loops. Clearly, this fact can be used to carry

out non-trivial tests for any candidate gravity dual for these theories.

In the special case of three spacetime dimensions, the recent developments due to

Bagger, Lambert and Gustavsson (BLG) [16–19] and Aharony, Bergman, Jafferis and Mal-

dacena (ABJM) [20] relate the sixteen supercharge SYM theory to superconformal Chern-

Simons (SCS) theories. The N = 8 SCS theory proposed by BLG, which can also be recov-

ered as a special case of the ABJM model, is believed to be related to the IR limit of the

sixteen supercharge SYM theory. It is interesting to note that Wilson loops that preserve

global supersymmetries have also been constructed for the ABJM model in [21–24]. In the

present paper, we have shown that Zarembo loops exist in the SYM theory both at weak

and at strong coupling. It thus seems plausible that one can uncover a precise relationship

between the Zarembo loops of the SYM theory and the corresponding operators in the

BLG model. Perhaps, the formal relationship between the Lagrangians of the two theories,

elucidated in [25], can prove to be fruitful to uncover this aspect of the M2/D2 duality.

On a related note, it would be extremely interesting to explore connections between

Wilson loops and scattering amplitudes. The relations between these two classes of gauge

theory observables, first studied in the context of N = 4 SYM in d = 4 [26–30] can po-

tentially exist for three dimensional Yang-Mills theories as well. The matrix structure of

all 2 ↔ 2 scattering amplitudes for N ≥ 4 SCS theories was recently explored in [31].

This study includes the BLG model, which is expected to be the strong coupling dual of

the sixteen supercharge SYM theory. A further study of Wilson loops in the three di-

mensional gauge theory is obviously needed to fill the missing connections between Wilson

loops and scattering amplitudes both in the SYM theory as well as its dual strong-coupling

description as a SCS theory.
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A Supersymmetry of string solutions

The supersymmetry analysis of the case p = 3 is given in [32], and is rather special due to

the constancy of the dilaton. Therefore here we will present the analysis for the cases p 6= 3.

The Killing spinor equations for the geometries (3.1) are obtained by demanding that

the variation of the dilatino λ and gravitino ψM vanish on the supergravity solution. We use

the “democratic formalism”10 developed in [33] (see for example [34], appendix B therein),

δψM = DM ǫ+
eφ

16
F̃(p+2) γM Pp ǫ = 0,

δλ = ∂̃φ ǫ+
eφ

8
(−1)p F̃(p+2) Pp ǫ = 0,

(A.1)

where we have used the fact that the p-brane solutions have only a dilaton φ and a (p+2)-

form field strength F(p+2) turned on. The Killing spinor is denoted by ǫ while γM are

the real 10-d curved space gamma matrices in Lorentzian mostly positive signature. The

covariant derivative DM = ∂M + 1
4ω

ab
MΓab where Γa denote tangent space gamma matrices.

The constant matrices Pp are given in [34] but won’t concern us here. Finally we have

adopted the notation

F̃(p+2) ≡ FM1...Mp+2γ
M1...Mp+2, ∂̃φ ≡ γM∂Mφ. (A.2)

By acting with γM from the left on the second equation in (A.1) we may eliminate the field

strength term in the first equation and obtain

DM ǫ− 1

2

sM
(3 − p)

∂̃φ γM ǫ = 0, sM =

{
1 if M = 0, . . . , p

−1 otherwise
, (A.3)

where we have used the fact that on the solution (3.1) the dilaton φ depends only on the

coordinate U , while F(p+2) = F0...p U where 0, . . . , p denote the p+ 1 coordinates xq.

For convenience we scale the Cp and α′ dependence out of the metric, which is equiva-

lent to replacing α′, Cp → 1. We also specialize to those coordinates relevant to the string

solution (3.4). We then employ the following basis of one-forms

eŪ = U (p−7)/4 dU, er̄ = U (7−p)/4 dr, eψ̄ = rU (7−p)/4 dψ,

eθ̄ = U (p−3)/4 dθ, eφ̄ = U (p−3)/4 cos θ dφ,
(A.4)

using which the relevant components of the spin-connection are

ωŪ r̄r =
p− 7

4
U (5−p)/2, ωŪψ̄ψ =

p− 7

4
r U (5−p)/2, ωr̄ψ̄ψ = −1,

ωŪ θ̄θ =
3 − p

4
, ωŪ φ̄φ =

3 − p

4
cos θ, ωθ̄φ̄φ = sin θ.

(A.5)

10In the democratic formalism the number of Ramond-Ramond potentials C(n) is doubled so that n =

0, 2, . . . , 10 for IIB and n = 1, 3, . . . , 9 for IIA. The extra potentials, in the absence of fermionic and NS-NS

fields, are simply given by the action of Hodge duality upon the field strengths.
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The Killing spinor equations (A.3) are then given by

∂U ǫ+
p− 7

8U
ǫ = 0,

∂r ǫ = 0,

∂ψ ǫ−
1

2
Γr̄ψ̄ ǫ = 0,

∂θ ǫ−
1

2
ΓŪ θ̄ ǫ = 0,

∂φ ǫ+
1

2
sin θ Γθ̄φ̄ −

1

2
cos θ ΓŪ θ̄ ǫ = 0,

(A.6)

and solved by

ǫ = U (7−p)/8 e
θ
2
ΓŪθ̄ e

ψ

2
Γr̄ψ̄ e−

φ

2
Γφ̄Ū ǫ0. (A.7)

The supersymmetry projector for the fundamental string is given by

∂τX
M∂σX

N γMN ǫ =
√

− det ∂aXM∂bXNGMN P ǫ = LP ǫ , (A.8)

where

P =

{
Γ0 . . .Γ9, IIA, i.e. p even

KI, IIB, i.e. p odd
, (A.9)

where KI = −IK, K acts by complex conjugation upon spinors while I acts as −i, see [35–

37]. On our solution (3.7) we find

∂τX
M∂σX

N γMN =U ′ r Γψ̄Ū + U ′ U (p−5)/2 cos θ Γφ̄Ū

+ r′ r U (7−p)/2 Γψ̄r̄ + r′ U cos θ Γφ̄r̄

+ θ′ U rΓψ̄θ̄ + θ′U (p−3)/2 cos θ Γφ̄θ̄.

(A.10)

The Killing spinor also simplifies to

ǫ = U (7−p)/8 e
θ
2
ΓŪθ̄ e

τ
2 (Γr̄ψ̄−Γφ̄Ū) ǫ0. (A.11)

In order to find solutions to the projector equation, we find that we must remove the τ

dependence from the Killing spinor by requiring

Γr̄ψ̄ ǫ0 = Γφ̄Ū ǫ0. (A.12)

The projector equation is then

e−
θ
2
ΓŪ θ̄

[
U ′ r Γψ̄Ū + U ′ U (p−5)/2 cos θ Γφ̄Ū + r′ r U (7−p)/2 Γψ̄r̄ + r′ U cos θ Γφ̄r̄

+ θ′ U rΓψ̄θ̄ + θ′U (p−3)/2 cos θ Γφ̄θ̄

]
e
θ
2
ΓŪθ̄ ǫ0 = LPǫ0.

(A.13)
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Expanding out the l.h.s. of this expression and using (A.12) one finds

−
(
sin θ r U ′ + cos θ θ′ r U

)
Γθ̄ψ̄ ǫ0 −

(
sin θ cos θ U ′ U (p−5)/2 + θ′ U (p−3)/2 cos2 θ

)
Γθ̄φ̄ ǫ0

+
(
U ′ U (p−5)/2 cos2 θ − r′ r U (7−p)/2 − θ′ sin θ cos θ U (p−3)/2

)
Γφ̄Ū ǫ0

+
(
U ′ r cos θ + r′ U cos θ − θ′ r U sin θ

)
Γψ̄Ū ǫ0.

(A.14)

One then finds that the first three bracketed expressions are zero on the solution (3.7),

while the last bracketed expression is equal to
√

det ∂aXM∂bXNGMN , which by the Vi-

rasoro constraint (3.6) is the square-root of a perfect square. In addition to (A.12) we

therefore also have

Γψ̄Ū ǫ0 = iP ǫ0. (A.15)

The two conditions (A.12) and (A.15) each reduce the supersymmetry by half, thus the

solutions respect a quarter of the original 16 supersymmetries, i.e. they are 1/4 BPS.
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